Attosecond core-level X-ray spectroscopy
Article by   in categories: materialsparticle physics

The many-body interaction of charges (electrons) and nuclei (phonons) plays a critical role in determining the properties and functionalities of molecules and solids. Additionally, the exact correlated motion of these particles gives rise to different conductivity, energy storage capabilities, phase transitions, and superconductivity. Moreover, the team of ICREA Prof. at ICFO Jens Biegert has developed attosecond soft X-ray core-level spectroscopy as a method to observe the correlated interaction between charges and phonons in real time.

Attosecond soft X-ray spectroscopy relies on the use of ultrashort pulses with photon energies that cover the entire water-window range. Through high-order harmonic generation with an intense few-cycle short-wavelength infrared pulse, the team has successfully generated a bright 165 attosecond pulse with photon energies of up to 600 eV. By directing this ultrashort soft X-ray pulse into the sample, the high-energy photons can excite the electrons in the K-shell or L-shell to unoccupied or continuum states.

Furthermore, this soft X ray absorption spectroscopy provides researchers with a powerful tool for unraveling the electronic and structural characteristics of the material at the same time.

https://lifeboat.com/blog/2023/10/realizing-attosecond-core-level-x-ray-spectroscopy-for-the-investigation-of-condensed-matter-systems

If you found this news interesting, remember that we have more in our News & Events section!

Attoscience Nobel Prize

The local newspaper ARA and ARA Balears interviews Prof. Jens Biegert for the Nobel Prize 2023 on Attoscience. Biegert collaborated with several Nobel Laureates, so the local newspaper wanted to interview him to learn and understand more about this field of science.

Link to the news online 

Jens Biegert joins Optica Board of Directors

What is attosecond science, and how is it used?

Optica Fellow Jens Biegert, ICFO, Spain, explains how the field unravels how things work inside materials using ultrashort laser pulses.

If you enjoyed this glimpse into the world of attosecond science, dive deeper into the cutting edge of optics and photonics research on the Optica YouTube channel!

Ein Photon rein, zwei Elektronen raus

https://pro-physik.de/nachrichten/ein-photon-rein-zwei-elektronen-raus

Exzitonenspaltung für die Entwicklung hocheffizienter Photovoltaik.

Die Photovoltaik ist eine Schlüssel­technologie für eine nachhaltige Energie­versorgung. Bei nur wenigen molekularen Materialien wie Pentacen wird ein Photon in zwei Elektronen umgewandelt. Diese Anregungs­verdopplung, die als Exzitonenspaltung bezeichnet wird, könnte für die Entwicklung hocheffizienter Photovoltaik äußerst nützlich sein, insbesondere um die vorherr­schende Technologie auf Silizium­basis zu verbessern. Ein Forschungsteam des Fritz Haber Instituts, der TU Berlin und der Universität Würzburg hat einen ultraschnellen Film der Umwandlung von Photonen in Elektrizität aufgenommen und damit eine jahrzehnte­alte Debatte über den Mechanismus des Prozesses beendet.

Abb.: Exzitonenspaltung: In Pentacen wird ein Photon in zwei Elektronen...
Abb.: Exzitonenspaltung: In Pentacen wird ein Photon in zwei Elektronen umgewandelt. (Bild: TU Berlin)

„Wenn Pentacen durch Licht angeregt wird, reagieren die Elektronen im Material darauf extrem schnell“, erklärt FHI-Forscher Ralph Ernstorfer. „Bisher war umstritten, ob ein Photon zwei Elektronen direkt anregt oder zunächst ein Elektron, welches dann seine Energie mit einem anderen Elektron teilt.“ Um dieses Rätsel zu lösen, verwendeten die Forscher hochmoderne Technik zur Beobachtung der Dynamik von Elektronen auf der Femto­sekunden-Zeitskala. Mit einer ultra­schnellen Elektronen­filmkamera konnten sie zum ersten Mal Bilder der extrem kurzlebigen angeregten Elektronen aufnehmen.

„Diese Elektronen zu sehen, war entscheidend, um den Prozess zu entschlüsseln“, sagt Alexander Neef vom FHI. „Ein angeregtes Elektron hat nicht nur eine bestimmte Energie, sondern bewegt sich auch in bestimmten Orbitalen. Es ist viel einfacher, die Elektronen zu unterscheiden, wenn wir ihre Orbital­formen sehen können und wie sich diese mit der Zeit verändern.“ Anhand der Bilder aus dem ultra­schnellen Elektronen­film konnten die Forscher die Dynamik der angeregten Elektronen erstmals anhand ihrer Orbital­eigenschaften zerlegen. „Wir können nun mit Sicherheit sagen, dass nur ein Elektron direkt angeregt wird, und haben den Mechanismus des Anregungs-Verdoppelungs­prozesses identi­fiziert“, sagt Neef.

Die Kenntnis des Mechanismus der Exzitonen­spaltung ist eine wesentliche Voraus­setzung für die Nutzung von Exzitonen für photovoltaische Anwendungen. Eine Silizium-Solarzelle, die mit einem anregungs­verdoppelnden Material verbessert wurde, könnte den Wirkungsgrad bei der Umwandlung von Sonnen­energie in Elektrizität um ein Drittel erhöhen. Ein solcher Fortschritt könnte enorme Auswirkungen haben, da die Solarenergie die domi­nierende Energiequelle der Zukunft sein wird. Schon heute fließen große Investi­tionen in den Bau von Solarzellen der nächsten Generation.

FHI / JOL

Weitere Infos

Exciton Fission Breakthrough: Revolutionizing High-Efficiency Photovoltaics

Photovoltaics, the conversion of light to electricity, is a key technology for sustainable energy. In fact, since the days of Max Planck and Albert Einstein, we have known that both light and electricity are quantized, meaning they come in tiny packets called photons and electrons. In a typical solar cell, a single photon transfers its energy to a single electron of the material, but no more than one. However, few molecular materials, like pentacene, are an exception to this rule. In these materials, the conversion yields two electrons from one photon, a phenomenon known as exciton fission. This process could be extremely useful for high-efficiency photovoltaics, specifically to upgrade the dominant silicon-based technology.

A team of researchers at the Fritz Haber Institute of the Max Planck Society, the Technical University of Berlin, and the Julius-Maximilians-Universität of Würzburg have now deciphered the first step of this process by recording an ultrafast movie of the photon-to-electricity conversion process, resolving a decades-old debate about the mechanism of the process.

”When pentacene is excited by light, the electrons in the material rapidly react,” explains Prof. Ralph Ernstorfer, a senior author of the study. “It was an open and very disputed question whether a photon excites two electrons directly or initially one electron, which subsequently shares its energy with another electron.”

Capturing Electron Dynamics with Ultrafast Electron Movie Camera

To unravel this mystery the researchers used time- and angle-resolved photoemission spectroscopy, a cutting-edge technique to observe the dynamics of electrons on the femtosecond time scale, which is a billionth of a millionth of a second.  This ultrafast electron movie camera enabled them to capture images of the fleeting excited electrons for the first time.

“Seeing these electrons was crucial to decipher the process,” says Alexander Neef, from the Fritz Haber Institute and the first author of the study. “An excited electron not only has a specific energy but also moves in distinct patterns, which are called orbitals. It is much easier to tell the electron apart if we can see their orbital shapes and how these change over time.”

With the images from the ultrafast electron movie at hand, the researchers decomposed the dynamics of the excited electrons for the first time based on their orbital characteristics. “We can now say with certainty that only one electron is excited directly and identified the mechanism of the excitation-doubling process,” adds Alexander Neef.

Knowing the mechanism of exciton fission is essential to using it for photovoltaic applications. A silicon solar cell enhanced with an excitation-doubling material could boost the solar-to-electricity efficiency by one-third. Such an advance could have enormous impacts since solar energy will be the dominant power source of the future. Already today large investments are flowing into the construction of these third-generation solar cells.

Exciton fission one photon in two electrons out
Exciton fission – one photon in, two electrons out
by Staff Writers
Berlin, Germany (SPX) May 07, 2023

Unraveling the Mystery of Exciton Fission

“When pentacene is excited by light, the electrons in the material rapidly react,” explains Prof. Ralph Ernstorfer, a senior author of the study. “It was an open and very disputed question whether a photon excites two electrons directly or initially one electron, which subsequently shares its energy with another electron.”

Employing Cutting-Edge Techniques for Observation

To unravel this mystery, the researchers employed time- and angle-resolved photoemission spectroscopy, a cutting-edge technique to observe the dynamics of electrons on the femtosecond time scale, which is a billionth of a millionth of a second. Consequently, this ultrafast electron movie camera enabled them to capture images of the fleeting excited electrons for the first time, thereby providing crucial insights into exciton fission dynamics.

The Significance of Visualizing Electrons

“Seeing these electrons was crucial to decipher the process,” says Alexander Neef, from the Fritz Haber Institute and the first author of the study. “An excited electron not only has a specific energy but also moves in distinct patterns, which are called orbitals. Thus, it is much easier to tell the electron apart if we can see their orbital shapes and how these change over time.”

Insights Gained from Ultrafast Electron Movies

With the images from the ultrafast electron movie at hand, the researchers decomposed the dynamics of the excited electrons for the first time based on their orbital characteristics. Consequently, “We can now say with certainty that only one electron is excited directly and identified the mechanism of the excitation-doubling process,” adds Alexander Neef. This detailed understanding marks a significant advancement in the study of exciton fission dynamics.

Implications for Photovoltaic Applications

Knowing the mechanism of exciton fission is essential to using it for photovoltaic applications. For instance, a silicon solar cell enhanced with an excitation-doubling material could boost the solar-to-electricity efficiency by one-third. Consequently, such an advance could have enormous impacts since solar energy will be the dominant power source of the future. Therefore, large investments are already flowing into the construction of these third-generation solar cells.

https://www.spacedaily.com/reports/Exciton_fission___one_photon_in_two_electrons_out_999.html

SciTechDaily features the Nature study led by Prof. Dr. Ralph Ernstorfer